AG-codes on Elliptic Curves
نویسنده
چکیده
For a secret sharing scheme, two parameters dmin and dcheat are defined in [1] and [2]. These two parameters measure the errorcorrecting capability and the secret-recovering capability of the secret sharing scheme against cheaters. Some general properties of the parameters have been studied in [1-3]. The MDS secret-sharing scheme is defined in [2] and it is proved that MDS perfect secret sharing scheme can be constructed for any monotone access structure. The famous Shamir (k, n) threshold secret sharing scheme is the MDS with dmin = dcheat = n− k+1. In [4] we proposed the linear secret sharing scheme from algebraic-geometric codes. In this paper the linear secret sharing scheme from AG-codes on elliptic curves is studied and it is shown that many of them are MDS linear secret sharing scheme.
منابع مشابه
MDS Ideal Secret Sharing Scheme from AG-codes on Elliptic Curves
For a secret sharing scheme, two parameters dmin and dcheat are defined in [12] and [13]. These two parameters measure the errorcorrecting capability and the secret-recovering capability of the secret sharing scheme against cheaters. Some general properties of the parameters have been studied in [12],[9] and [13]. The MDS secretsharing scheme was defined in [13] and it was proved that MDS perfe...
متن کاملOn the rank of certain parametrized elliptic curves
In this paper the family of elliptic curves over Q given by the equation Ep :Y2 = (X - p)3 + X3 + (X + p)3 where p is a prime number, is studied. Itis shown that the maximal rank of the elliptic curves is at most 3 and someconditions under which we have rank(Ep(Q)) = 0 or rank(Ep(Q)) = 1 orrank(Ep(Q))≥2 are given.
متن کاملEfficient elliptic curve cryptosystems
Elliptic curve cryptosystems (ECC) are new generations of public key cryptosystems that have a smaller key size for the same level of security. The exponentiation on elliptic curve is the most important operation in ECC, so when the ECC is put into practice, the major problem is how to enhance the speed of the exponentiation. It is thus of great interest to develop algorithms for exponentiation...
متن کاملConstruction of an Elliptic Curve over Binary Finite Fields to combine with LDPC Code in Mobile Communication
In this paper we propose the construction of an efficient cryptographic system, based on the combination of the ElGamal Elliptic Curve Algorithm and Low Density Parity Check (LDPC) codes for mobile communication. When using elliptic curves and codes for cryptography it is necessary to construct elliptic curves with a given or known number of points over a given finite field, in order to represe...
متن کاملComplete characterization of the Mordell-Weil group of some families of elliptic curves
The Mordell-Weil theorem states that the group of rational points on an elliptic curve over the rational numbers is a finitely generated abelian group. In our previous paper, H. Daghigh, and S. Didari, On the elliptic curves of the form $ y^2=x^3-3px$, Bull. Iranian Math. Soc. 40 (2014), no. 5, 1119--1133., using Selmer groups, we have shown that for a prime $p...
متن کامل